Light Resin Transfer Molding

When you apply to become a Certified Composites Technician-Light Resin Transfer Molding, you take the first step towards achieving excellence in the composites industry, advancing your career, and pursuing comprehensive composites knowledge.

The CCT program is designed to elevate standards in the industry by enhancing individual performance and recognizing those who demonstrate critical knowledge of the composites industry. The CCT-LRTM designation is a noted symbol of education among employers, employees, and industry professionals. As the industry advances, being a CCT will become increasingly important.

If you are committed to developing your career, attaining the CCT-LRTM designation will allow others to recognize you as a certified composites industry professional.
Disclaimer

The sole purpose of this Study Guide is to assist in the preparation for the CCT examination. It is not a formal code or standard of the American Composites Manufacturers Association nor is the information contained herein based upon such a code or standard.

While the Study Guide reflects ACMA's understanding of current industry practices in general, nothing herein should be viewed as a recommendation by ACMA that any application, technique or process is appropriate in any particular circumstance. Similarly, the fact that a particular application, technique or process is listed in the Study Guide should not be viewed as an endorsement by ACMA of such application, technique or process.

ACMA makes no claims concerning the accuracy or applicability of the information contained in the Study Guide and ACMA is not responsible for the results obtained from the use of such information. Determination of the suitability of the information in the Study Guide other than for the preparation for the CCT Examination is the sole responsibility of the user.

This Study Guide is sold without warranties, express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose. ACMA expressly disclaims all such warranties.

ACMA is not responsible for any damage or loss caused or alleged to be caused by the information contained herein. Accordingly, ACMA shall not be liable for any direct, indirect, incidental, special or consequential damages, resulting from the use of the Study Guide.

ACMA does not accept any liability based on the designation conferred upon an individual who successfully completes the certification program. Any company recognizing the conference of such a designation is responsible for verifying any and all credentials and skills of anyone with the CCT designation.

©2011 American Composites Manufacturers Association
1010 North Glebe Road, Suite 450
Arlington, VA 22201
Phone: 703-525-0511
Fax: 703-525-0743
www.acmanet.org

All rights reserved.
No part of this book may be reproduced, in any form or by any means, without permission from the publisher.
Printed in the United States
Table of Contents

Introduction to Light RTM

Section 1: Historical Perspective ...5
Section 2: Understanding LRTM. ...6
Section 3: Light RTM Products ...8

Module 1

Process and Production

Section 1: Overview ..13
Section 2: Darcy’s Law ..14
Section 3: The LRTM Process ...16
Section 4: LRTM Production Cycle23

Module 2

Tooling and Equipment

Section 1: Design for LRTM ...31
Section 2: LRTM Tooling ..31
Section 3: Standard and Accessory Fittings33
Section 4: Vacuum Pumps ...35
Section 5: The Vacuum System ..36
Section 6: Mix and Metering Delivery38

Module 3

Materials

Section 1: Materials Overview ...43
Section 2: Reinforcements ..43
Section 3: Resins ..47
Section 4: Curing Agents ...49
Section 5: Fillers ..50
Section 6: Core Materials and Laminate Bulkers51
Module 4

Gel Coat Application

Section 1: Introduction to Gel Coating Technology 57
Section 2: Gel Coating Safety ... 59
Section 3: Gel Coat Storage and Handling 62
Section 4: Raw Material Quality Assurance 63
Section 5: Overview of Spray Gun Set-Up 64
Section 6: Gel Coat Application Methods 65
Section 7: Pre-Gel Coat Checklist 67
Section 8: Spraying Techniques ... 68
Section 9: Gel Coating for LRTM ... 69

Module 5

LRTM Troubleshooting

Section 1: Overview .. 75
Section 2: Quality Methods for LRTM 76
Section 3: Troubleshooting ... 76

Appendix I

Glossary ... 85

Appendix II

Tool Construction

Section 1: Introduction .. 111
Section 2: Plug or Master ... 111
Section 3: Mold-Making Materials 113
Section 4: General Construction .. 116

Appendix III

Spray Gun Calibration Record ... 125

Appendix IV

Controlled Spraying Performance Evaluation 129
Introductions to Light RTM

SECTION 1

Historical Perspective

Resin transfer molding (RTM) and vacuum infusion processing (VIP) were developed over five decades ago. Until recently, these molding methods remained in the background of composites manufacturing or experienced sporadic interest from the composites community. Today, with the development of highly engineered systems, both processes are receiving well-deserved attention.

RTM and VIP are most often associated with intermediate or low volume closed mold processing, and are generally considered more advanced processes from open molding. While the terms “resin transfer” and “vacuum infusion” are sometimes used interchangeably, in practice the methods are very different.

From a technical perspective, the terminology is straightforward. The traditional process defined as RTM states that the pressure in the mold cavity is higher than atmospheric pressure. In RTM, rigid molds are used and elaborate clamping mechanisms are incorporated to compensate for the higher pressures involved. If the pressure in the mold cavity is lower than atmospheric pressure, we refer to the process as Vacuum Infusion Processing (VIP).

There has been some confusion concerning these molding processes with the use of proprietary names and acronyms. Many molders have developed minor processing variations and have coined unique names to describe their version of the generic process. In the course of developing these process variations, commercial names and the associated acronyms have been attached to particular methods. In some cases, the terminology incorrectly describes the process.

RTM and VIP are both closed molding processes that are used to produce composite parts from low cost molds. These molds are generally constructed from fiber reinforced plastic (FRP) composite materials. RTM uses rigid matched molds which form a cavity, while VIP uses a single mold with a flexible film or bladder for the B-side surface. Thus RTM yields parts with two cosmetic surfaces while VIP yields parts with only one cosmetic surface. RTM molds define part thickness which allows a range of glass contents that are determined by the amount of glass used. In VIP the glass content is set by atmospheric pressure and the loft of the reinforcement. Consequently, a narrow range of glass contents are available in VIP. In RTM, the resin is pumped into the mold cavity under pressure while VIP uses only atmospheric pressure to push the resin into an evacuated cavity. Because RTM resin is pumped, the resin is typically introduced into the cavity from one or a few
points. Because there is low driving force for the resin in VIP, the resin is typically introduced from many points or from long flow channels.

Although conceptually simple, RTM, in practice, is a very difficult process to do well. One of the biggest problems with RTM is determining how to uniformly and completely fill the cavity. The process is also very sensitive to reinforcement uniformity and in higher glass contents it becomes increasingly difficult to fill without dry spots.

Light Resin Transfer Molding (LRTM) bridges RTM and VIP, using one rigid mold and a light semi-rigid mold called a counter tool. Most molders think LRTM is a significant improvement over RTM because it is more cost effective and easier to manipulate. Although it shares a name with RTM, LRTM is really much more like VIP, utilizing a vacuum process with only one rigid mold. LRTM does share a few good attributes with conventional RTM such as yielding two cosmetic surfaces per part and permitting a larger range of glass contents.

In the early 1990s, lighter, more flexible counter molds were developed that enabled the operator to use vacuum pressure to assist in drawing the resin into the mold cavity. At the same time, peripheral resin galleries were incorporated into the counter mold so that the resin flows from an injection port in the peripheral gallery to one or more vacuum ports in the mold cavity.

Over the last ten years there have been many developments to improve the LRTM process. Resins with higher heat distortion temperatures have improved the working life of counter molds. Computer controlled vacuum injection equipment has reduced cycle times and decreased material waste. Properties of reinforcement materials have improved allowing products to be manufactured that are lighter, stronger and less expensive.

Developments in LRTM continue today. Injection and mold handling equipment are becoming more capable and versatile, and less costly on a per-part basis. Material innovation also continues with improved fiber strengths and more efficient flow media.

SECTION 2

Understanding LRTM

LRTM is a process that uses a closed mold system to manufacture FRP parts. This closed mold system consists of a rigid base mold and a semi-rigid counter mold. These molds are often referred to as the A- and B-side molds. The molds are made to fit together very precisely and, when assembled, create a cavity in which the
laminates are formed. Initiated resin is drawn into the resulting cavity under vacuum pressure. The infusion is sometimes assisted by using low-pressure injection from mix/metering equipment to move resin into the mold cavity.

LRTM is a very versatile manufacturing process with the potential advantages of:

- Reduced cycle times in comparison with open molding
- Reduced labor costs
- Cosmetic surfaces for both the A and B sides
- Dimensional stability
- Improved process control
- Consistent material usage
- Minimal volatile organic compound (VOC) emissions
- Improved shop working conditions

The equipment required for LRTM includes the following:

- Mold set
- Vacuum reservoir
- Hoses and fittings
- Vacuum pumps for mold clamping and pulling resin into the mold
- Automated metering/mixing equipment for resin delivery (optional)

Figure 1 – Foreground - Finished Part; Middle - Base or “A-side” Mold; Back - Counter mold or “B-side” Mold