FRP Composites
Grating Manual
For Pultruded and Molded
Grating and Stair Treads
American National Standard
FRP Composites Grating Manual
For Pultruded and Molded Grating and Stair Treads

Larry B. Cox
Secretariat
American Composites Manufacturers Association

Approved: January 8, 2014

American National Standards Institute, Inc.

Approval of an American National Standard requires review by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made towards their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will under no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

CAUTION NOTICE: This American National standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

American National Standards Institute, Inc., 25 West 43rd Street, New York, NY 10036

Copyright © 2014 by American Composites Manufacturers Association (ACMA)
All rights reserved. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher.
ACKNOWLEDGEMENTS

This manual was developed by representative member companies of the Fiberglass Grating Manufacturers Council (FGMC) of the American Composites Manufacturers Association (ACMA) to provide guidance on the design, selection and specification of fiberglass grating. The following are members of the FGMC:

<table>
<thead>
<tr>
<th>Name</th>
<th>Company Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldred D’Souza, P.E., Chairman</td>
<td>Fibergrate Composite Structures, Inc.</td>
</tr>
<tr>
<td>Glenn Barefoot</td>
<td>Strongwell</td>
</tr>
<tr>
<td>Gregory Bond, P.E.</td>
<td>Strongwell</td>
</tr>
<tr>
<td>John P. Busel</td>
<td>American Composites Manufacturers Association</td>
</tr>
<tr>
<td>Dean Halbirt</td>
<td>Delta Composites, LLC</td>
</tr>
<tr>
<td>Wyatt Hardenberg</td>
<td>Seasafe, Inc.</td>
</tr>
<tr>
<td>Wendell Hollingsworth</td>
<td>Fibergrate Composite Structures, Inc.</td>
</tr>
<tr>
<td>Blake Masters</td>
<td>Delta Composites, LLC</td>
</tr>
<tr>
<td>Greg McCoy</td>
<td>Creative Pultrusions, Inc.</td>
</tr>
<tr>
<td>Kevin Spoo CCT, C, VIP</td>
<td>Owens Corning</td>
</tr>
<tr>
<td>Peter Surmak</td>
<td>Interplastic Corporation</td>
</tr>
<tr>
<td>David Wolfe</td>
<td>Precisioneering Limited</td>
</tr>
<tr>
<td>Lei Zhao, PhD, P.E.</td>
<td>Seasafe, Inc.</td>
</tr>
<tr>
<td>Steven Zhao</td>
<td>ChinaGrate</td>
</tr>
</tbody>
</table>

The Fiberglass Grating Manufacturers Council (FGMC) of the American Composites Manufacturers Association (ACMA) also acknowledges and expresses gratitude to the non-member volunteer contributions made by material suppliers, fiberglass grating manufacturers, engineers and specifiers, and academia in developing this standard and the code of standard practice. For further information concerning the activities of the FGMC please refer to: www.fiberglassgrating.org.
PREFACE

This preface is included as background information only. It is not part of the official American National Standard FRP Composites Grating Manual For Pultruded and Molded Grating and Stair Treads.

The Fiberglass Grating Manufacturers Council (FGMC) of the American Composites Manufacturers Association (ACMA) has supported the preparation and development of this Manual. Manufacturers of FRP composites grating represented on the Council manufacture fiberglass grating products conforming to the standards and specifications contained herein.

Fiberglass grating has been manufactured and used since the 1960s. It exhibits many features (as compared to metal gratings or wood decks) that are beneficial in a variety of applications. These features include corrosion and rot resistance, lightweight, high strength-to-weight, electrical and thermal non-conductivity and molded-in colors. Due to the relatively low modulus of elasticity of glass fiber reinforced polymers, fiberglass grating is always controlled by the serviceability (deflection) limit state rather than strength limit states. This design methodology results in very high, real safety factors.

ACMA is the registered trademark of the American Composites Manufacturers Association.

This standard was developed under procedures accredited by the criteria for American National Standards. The list of canvasses that reviewed this standard was balanced to assure that individuals from competent and concerned interests had an opportunity to participate. The standard is available for public input. ACMA does not approve, rate or endorse any item or property device described in this standard. Participation by federal/state agency representatives or persons associated with industry is not to be interpreted as an endorsement of this standard.
TABLE OF CONTENTS

LIST OF TABLES AND FIGURES ... xii

1.0 GENERAL SCOPE ... 1

2.0 GRATING MANUFACTURING PROCESSES 3

3.0 STANDARD MARKING SYSTEM 5

4.0 STANDARD MOLDED GRATING DETAILS 6

5.0 STANDARD PULTRUDED GRATING DETAILS 7

6.0 TOLERANCES OF MANUFACTURED AND FABRICATED PANELS .. 8

7.0 LOAD TABLES ... 10

 7.1 Inch-Pound Units .. 11
 Molded Grating – Uniform Load 11
 Molded Grating – Concentrated Line Load 12
 Pultruded Grating – Uniform Load 13
 Pultruded Grating – Concentrated Line Load 15

 7.2 SI Units ... 17
 Molded Grating – Uniform Load 17
 Molded Grating – Concentrated Line Load 18
 Pultruded Grating – Uniform Load 19
 Pultruded Grating – Concentrated Line Load 21

8.0 ANCHORING DETAILS, BANDING AND KICK PLATES 23

 8.1 Anchoring Details .. 23

 8.2 Banding & Kick Plates ... 24

9.0 ORDERING INFORMATION .. 26

10.0 STANDARD SPECIFICATION – MOLDED AND PULTRUDED GRATING .27

11.0 CODE OF STANDARD PRACTICE 33

12.0 GLOSSARY OF TERMS ... 37

APPENDIX A – TEST METHODS OF TESTING GRATING PANELS 43

APPENDIX B – GRATING DESCRIPTIONS 50
LIST OF TABLES

Table 3.1 – Standard Marking Systems for Molded and Pultruded Grating .. 5
Table 6.1 – General Tolerances of Grating Panels. ... 8
Table 7.1 – Molded Grating – Uniform Load (Deflection in inches) ... 11
Table 7.2 – Molded Grating – Concentrated Line Load (Deflection in inches) 12
Table 7.3 – Pultruded Grating – Uniform Load (Deflection in inches) 13
Table 7.4 – Pultruded Grating – Concentrated Line Load (Deflection in inches) 15
Table 7.5 – Molded Grating – Uniform Load (Deflection in millimeters) 17
Table 7.6 – Molded Grating – Concentrated Line Load (Deflection in millimeters) 18
Table 7.7 – Pultruded Grating – Uniform Load (Deflection in millimeters) 19
Table 7.8 – Pultruded Grating – Concentrated Line Load (Deflection in millimeters) 21
Table A-1 – Number of Load Bars .. 43
Table A-2 – Required Test Spans & Sample Lengths – Pultruded Grating 43
Table A-3 – Required Test Spans & Sample Lengths – Molded Grating 44
LIST OF FIGURES

Figure 2.1 – Molded Grating with Embedded Grit .. 3
Figure 2.2 – Molded Grating with Meniscus Surface 3
Figure 2.3 – Pultrusion Process ... 4
Figure 2.4 – Pultruded Grating Assembly .. 4
Figure 4.1 – Standard Molded Grating Details ... 6
Figure 5.1 – Standard Pultruded Grating Details 7
Figure 6.1 – Grating Clearances ... 9
Figure 7.1 – Molded Grating – Uniform Load. .. 11
Figure 7.2 – Molded Grating – Concentrated Line Load 12
Figure 7.3 – Pultruded Grating – Uniform Load 13
Figure 7.4 – Pultruded Grating – Concentrated Line Load 15
Figure 7.5 – Molded Grating – Uniform Load .. 17
Figure 7.6 – Molded Grating – Concentrated Line Load 18
Figure 7.7 – Pultruded Grating – Uniform Load 19
Figure 7.8 – Pultruded Grating – Concentrated Line Load 21
Figure 8.1 – Anchoring Options for Molded and Pultruded Grating 23
Figure 8.2 – FRP Edge Banding for Molded Grating 24
Figure 8.3 – FRP Kick Plates for Molded Grating 24
Figure 8.4 – FRP Banding/Kick Plates for Pultruded Grating 25
Figure A-1 – Testing Layout for Pultruded Grating – Span 12 inches 45
Figure A-2 – Testing Layout for Pultruded Grating – Span 24 inches 45
Figure A-3 – Testing Layout for Pultruded Grating – Span 30 inches 45
Figure A-4 – Testing Layout for Pultruded Grating – Span 36 inches 46
Figure A-5 – Testing Layout for Pultruded Grating – Span 42 inches 46
Figure A-6 – Testing Layout for Pultruded Grating – Span 48 inches 46
Figure A-7 – Testing Layout for Pultruded Grating – Span 54 inches 47
Figure A-8 – Testing Layout for Pultruded Grating – Span 60 inches 47
Figure A-9 – Testing Layout for Pultruded Grating – Span 72 inches 47
Figure A-10 – Testing Layout for Molded Grating 48
Figure A-11 – Testing Layout for Rectangular Molded Grating 49
1.0 GENERAL SCOPE

1.1 Scope

The purpose of this manual is the publication of a consensus performance standard for fiberglass grating and to delineate the standardized testing procedures to be used to assure compliance of fiberglass grating products to those standardized herein.

This manual provides an overview of fiberglass grating and provides users with load tables, tolerances and ordering information to assist engineers and designers with designing fiberglass grating. Chapter 10 contains a Construction Specifications Institute (CSI) specification that will assist specifiers in the preparation of contract documents associated with fiberglass grating. Chapter 11 includes a Code of Standard Practice to introduce the reader to the recommended standard practice that demonstrates how fiberglass grating manufacturers are guided in making quality products.

1.2 Definition

Throughout this manual the reader will find the acronym FRP used. FRP refers to Fiber Reinforced Polymer and is a term used in the composites industry. It is common within the composites industry that the terminology referencing the fiber is often associated with fiberglass as this is the dominant fiber reinforcement used in fiberglass gratings.

1.3 Values

Values expressed in this manual are in both inch-pound units and SI units. Values stated in inch-pound units are regarded as the standard.

1.4 Advantages of FRP Grating

FRP grating and stair treads consist of an engineered polymer (plastic) and a reinforcement (typically fiberglass) and are further enhanced by the addition of other constituents specific to the end use performance or environmental concerns. The combination of materials produces some of the strongest, most versatile materials for their weight that composites technology has developed.

Through the selection and use of key materials the fiberglass grating manufacturer can tailor the end product to meet the stringent demands of the load performance, the application environment and durability requirements as specified.

FRP grating and stair treads produced will provide many benefits including: high strength and stiffness retention, light weight parts and consolidation, creep resistance, resistance to environmental factors (freeze-thaw, weathering, chemical and temperature, and fire performance) to name a few.

For further information, the reader is directed to FGMC website: www.fiberglassgrating.org
1.5 Applications

FRP grating and stair treads have been used very successfully in the following applications:

- Pedestrian walkways
 - Recreation
 - Public access
- Industrial walkways and work platforms
 - Chemical processing
 - Oil and gas exploration and refining
 - Water, and waste water facilities
 - Food preparation facilities

The versatility of FRP composites allows the fiberglass grating manufacturer to tailor fit the end product to meet the individual specifier’s needs.